
Group 26: A solver for cryptic crossword puzzles

Introduction

A cryptic crossword is a type of crossword in which each clue is a word puzzle. Each clue typically has one
or more words corresponding to a definition of the answer at either the beginning or end of the clue, with the
rest of the clue forming a word puzzle which also corresponds to the answer. Cryptic crosswords tend to be
exceedingly difficult, with even multiple-time Times Crossword Championship winner Mark Goodliffe taking 22
minutes to solve 3 championship crosswords [1] - the average user can take hours, if they even manage to solve
them at all.

For both cryptic crossword regulars and beginners, there is a lack of accessible tools to assist and enhance
their crossword experience. When working through a crossword users were not able to solve certain clues, or
believed they had the right answer to a clue but did not understand the wordplay. Therefore, our users wanted
the ability to know the solution to some clues, as well as their explanations.

Official solutions for crosswords are normally only released a week after the crossword, and even then they
lack explanations. There are websites such as https://www.fifteensquared.net which have crowd-sourced
solutions and explanations, but these are not available for all crosswords and lack a standard format. There
are some websites and apps which offer a solution to a single typed-in clue, however, these cannot solve cryptic
crossword clues and simply search a database of previously seen clues, without explanations or adaptation to
new clues (e.g. https://crossword-solver.io/). This can be time consuming if you are typing in lots of
clues from the same crossword, does not effectively help the user understand the clues and answers often simply
fail to solve the clue.

The app “Crossword Genius” offers an additional ability to solve entire crosswords. However, this is mainly
suited to the crosswords already in the app. Image recognition of a physical crossword is very limited. Crossword
Genius has a cryptic crossword solving AI, Ross, which is very good at solving clues, but not very good at
explaining the answer. Printed or partially completed crosswords are a common use case because people will
often get part way through a printed (i.e. in a newspaper) crossword before getting stuck, unfortunately, this
app struggles to read the majority of photos and is completely unable to process crosswords which have been
partially completed. Additionally, it is only available on iOS and takes a long time (> 5mins) to solve entire
crosswords.

In our project, we endeavoured to build an app to help people solve crosswords, capable of solving and
explaining full crosswords when given a photo or screenshot of the crossword, even if it is partially completed.
We aimed to improve upon the best current solution to our problem, Crossword Genius, by having better
explanations, the ability to read partially filled crosswords, a new and better image recognition system, cross-
platform support, and faster full grid solving while still allowing individual clue solving.

The Project Artefact

From our supervisor, we were supplied with a GitLab repository for a crossword solver called Morse. We
created a branch ‘microprocess’ in the repository and made any necessary additions to the repository there.
This included making an API interface to the existing code.

We were also supplied access to the API of an external crossword solver written by Unlikely AI, called Ross.
This solver is a black box to us, but we are able to utilise API calls to solve clues.

Our code utilises calls to both of these solvers as they have different strengths and weaknesses. Ross is
very good at solving clues with no known letters. Morse is less accurate at solving but when provided with the
correct answer it is very reliable at finding parsing the clue and producing an explanation. Combining these
two solvers we get the basis for our project.

Main repo: https://gitlab.doc.ic.ac.uk/g226002126/cryptic-crossword-solver
Morse Solver repo: https://gitlab.com/skellystudios/crossword-solver
Web app: http://www.wardware.co.uk

We created a web app which is hosted on the above URL. This domain was already owned by a group
member and so could be used with no additional cost. Currently, the domain only hosts on HTTP to avoid
mixed content errors with our HTTP API calls. This could be solved with additional funding.

1



Figure 1: System architecture diagram

We developed a flask-based API that calls the crossword solvers based on input from the front-end applica-
tion. This is served on a HP EliteDesk 800 G2 SFF PC. This device has 16GB of DDR4 Memory, with an Intel
i7-6700 Quad Core Processor. This device is not extremely powerful but is energy efficient enough that it can
be left running, as well as being a spare device and as such was good for our needs. It runs Ubuntu 22.10, with
Python 3.10.8.

A feature that was kept from the 1st iteration, shown in Figures 2 and 3, is the ability for the user to input
a single cryptic crossword clue, length and partial solution for the app to solve. The app outputs the top so-
lutions, the confidence level of each solution and the explanation of each solution. At most 3 solutions are shown.

Alternatively, the user is able to upload a photo from the gallery or take a photo in our app. The selected
image is displayed on the screen as shown in Figure 4, or a default example image if no image is selected.

On receiving an image, after preprocessing we find the largest approximately square contour (outline of a
shape), assuming this is the crossword grid. We then warp the grid as necessary to produce a flat square and
divide it into 15x15 segments. We decide if squares are white or black based on a threshold value for the number
of black pixels, and decide if white squares are filled with a written character based on another threshold value
applied to a subsection of the square.

For written squares, we use contour hierarchy information to remove any square numbers and borders. The
square is then cropped to fit the character with a small padding and rescaled to fit the input size of our neural
network.

We then run our TensorFlow neural network handwriting recognition model (trained on: https://www.kagg
le.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format) to predict what character
is in filled squares. We assume that users fill in entire clues, so stray characters are removed, and clues are
corrected using a dictionary.

The original image is then passed to the clue-reading system. We use Tesseract OCR to detect the font size
of text on the image. We attempt to detect the font size and process the data to remove outliers. If we deem
the font size to be reliably detected (standard deviation less than a set value) we use it as a guide to scale our
image, which ensures good performance in our image processing pipeline.

We use the detected font size as a guide, and explore nearby sizes to see if they are more optimal. To
create a robust computer vision model, we pre-process 7 slightly differently scaled images in parallel. During
preprocessing we remove shadows, apply a binary threshold, and remove noise.

The pre-processing pipeline has a fixed kernel size, so differently scaled images will have different levels of
readability. We take all 7 of the processed images and use Tesseract OCR to read their text. We try to parse
this text as a crossword and pick the best output, which is the crossword with the most clues correctly identified.

We correct any misread words or missed spaces by trying to split words apart and using Enchant’s autocor-
rect to check words are in the dictionary. Our parsing system uses a Levenshtein automata to efficiently find
Across/Down tags, which we wrote using the algorithm described in Schulz & Mihov, 2002 [2] and the Apache
Lucene source code as references.

The crossword grid display was built upon the GitHub repository https://github.com/JaredReisinger/

react-crossword. This repository is under the MIT licence so we are free to modify and distribute this code.

2



Figure 2: Single clue solver page Figure 3: Single clue answer page Figure 4: Crossword Input Page

Figure 5: Read Grid Figure 6: Solved Grid

3



Changes are as follows: React to React Native click and touch behaviour consistent across platforms, style
changes, jump to clues, added explanations for clues, edit clues and cells, integration of solving and updating
displays during solve.

An ‘edit’ button is provided to correct inaccurately read clues or handwritten letters on the grid. It can also
be used for the user to provide their own answers on the grid.

Full Grid Solving One distinct advantage that our app has over Ross, is its ability to leverage the grid when
solving an entire crossword. Ross and Morse both solve clues in isolation, without considering the intersections
between answers, which could narrow down the range of possibilities.

Thus, we developed a simple and quick method for best-effort full-grid solving. It operates as follows:

1. The clues are placed on the grid, and an intersection map () is generated for mapping a clue to its ’waiters’
which will have more information, should the original be solved.

2. A todo list is created from the clues, ordered by their number of waiters (starting important clues early
can speed up all their waiters, if solved)

3. A runners map maps clues to an AbortController, allowing their queries to be aborted

4. Now, for each clue in the todo list:

(a) A new AbortController is added to the runners map, then a query is sent to the backend with this
AC, as well as the current contents of the clue’s answer cells on the grid.

(b) Once the query returns, it either:

i. Fails, due to insufficient confidence (<0.95%) from Ross.

ii. Succeeds, in which case the answer is written to the grid, and a solve-with-answer query is sent
to Morse for explaining the answer. Then, all other runners for the same clue are aborted, since
the solution has been found, and the solve method (from 4(a)) is called for each of the waiters
for the solved clue.

Compared to more naive fullgrid-solving approaches –namely (a) ignoring the grid, and solving each clue
individually, and (b) dispatching queries for every unsolved clue given the current board state and waiting for
all of them to return before sending out more– this algorithm showed vast improvements in avg. % of clues
solved compared to (a) (44% vs 87% on recent The Guardians), and a huge avg. speedup over (b) (4 minutes
with 20:00 mins worst-case observed vs. 1:24 mins and aborted after 2 mins)

All the tools, libraries and resources we used, except Ross API, were used in accordance with their licence
and can be used in a commercial application if we chose to publish our Cryptic Crossword Solver in the future.
We would need to provide the Apache 2 licence along with the end product.

Evaluation

Figure 7: Computer Vision processing time depending on the qual-
ity of the image and method used

We believe we have met the user needs
specified in the introduction. In particu-
lar, our system has improved on the cur-
rent offerings by providing better expla-
nations with Morse, improving the num-
ber of machine-solvable clues by unifying
Ross and Morse, and creating a robust and
accurate computer vision system to parse
crosswords from images with handwritten
answers. We believe we have created an
app which is easy to use and has functions
which fulfil different user needs.

The size of the text on a page is very
important to the accuracy of our computer
vision pipeline. Too small images have
their text eroded away to be unreadable,
but too large images do not get cleaned up
enough to be readable. We tested different
approaches to picking the best scaling ra-
tio for our input image: A fixed image size

(2000pi), and a scheme where we read font size and scale to 1/3/5/7 similarly sized images, to allow the rather
inaccurate font size detection system to point us in the right general region, and to find the optimal solution

4



Figure 8: Scalability: Computer Vision RAM use Figure 9: Scalability: Computer Vision Request time

by trial and error. In Figure 7 we compare how accurate (normalised on output length) the results are, while
also considering the time taken to return back to the user. We test on 10 different images and average the
performance of the methods. We see that using the font detection method improves accuracy, and a wider
scale-ratio test space improves accuracy further at the expense of processing time. Our users did not want to
correct the read-in crossword manually as they wanted a seamless experience, so we prioritise accuracy over the
processing time. Furthermore, parallelising the processing reduces the time penalty to a manageable 10s.

We want our system to serve many users, so we tested the impact of increasing the number of concurrent users
on both the independent clue solver and computer vision systems. In Figure 8 and 9 we see that RAM usage
and processing time increase linearly on the computer vision task, suggesting even one request saturates the
computational capabilities of the machine. To make a future scalable solution we should separate the computer
vision and solver servers. We can distribute the computer vision tasks among multiple servers using a consistent
hashing scheme as its request independence lends itself well to horizontal scaling. The Morse solver servers,
however, can be configured to build a cache that speeds up subsequent similar requests, so investing in vertical
scaling (e.g. increasing RAM) for those servers could be more beneficial to increase maximum concurrent users.

We tested the performance of grid character recognition by filling in crosswords with characters and seeing
how many characters are correctly predicted out of 456 total character predictions.

Figure 10: Preprocessing methods effect on accuracy

We started with an average classification accuracy
of 68.2%. From our testing, in Figure 10 we see bor-
der removal does not affect the classification accu-
racy much, probably because the neural network has
very low weights for pixels on the margin as it does
not expect writing there. However, our classification
accuracy increases to 83.2% if we utilise both bor-
der removal and cropping. While this accuracy isn’t
that high, our model tends to underperform on letters
which are not that common in use, and our dictionary
is able to correct words with a few mispredicted let-
ters, resulting in very few misread words.

One weakness of the border removal algorithm is
that it requires the letter in the cell to be a single
connected stroke. If the letter is segmented for some

reason only one segment will be kept, and if it touches a cell number or border that number/border won’t be
removed.

In the future, we should look into improving the handwriting recognition performance to ensure our users
don’t need to correct any entries to make sure the experience is as hands-off as possible.

References

[1] Alan Connor. Crossword blog: watching a champion solver at work, 2014. URL https://www.theguardia

n.com/crosswords/crossword-blog/2014/oct/20/crossword-blog-watching-a-champion-solver-a

t-work. [Accessed on 2023-01-09].

[2] Klaus U. Schulz and Stoyan Mihov. Fast string correction with levenshtein automata. International Journal
on Document Analysis and Recognition, 5(1):67–85, 2002. doi: 10.1007/s10032-002-0082-8.

5


